
Group Name: sdmay20-26
Advisor and Client: Myra Cohen

Group Members:
Matthew Smith: Meeting Facilitator

Garrett Harkness: Scribe
Kevan Patel: Report Manager

Qiwei Li: Chief Engineer
Shiwei Wang: Test Engineer

Team Email: sdmay20-26@iastate.edu
Team Website: https://sdmay20-26.sd.ece.iastate.edu/

Revised: 12/8/2019

Assurance Recipes Application

DESIGN DOCUMENT

mailto:sdmay20-26@iastate.edu
https://sdmay20-26.sd.ece.iastate.edu/

SDMAY20-26 1

Executive Summary

Development Standards & Practices Used

In our group and with our faculty advisor, we decided to work under an agile
development process. We all meet as a group once a week to work on different
things we need to do, as well as another meeting with our advisor once a week as
well. One to two weekly sprints are created, with two major milestones in each
semester. Using Trello, we plan on keeping track of stories, hours, and progress
throughout the semester. We also use Gitlab for our version control so that we can
update our latest code and keep track of commits and pushes. All communication
is used via Slack and email for Team and Advisor communication.

We also want to run under a TDD (Test Driven Development) environment, we
plan to use CI/CD to implement this. CI/CD is a method to frequently deliver apps
to customers by introducing automation into the stages of app development. The
main concepts attributed to CI/CD are continuous integration, continuous
delivery, and continuous deployment. CI/CD is a solution to the problems
integrating new code can cause for development and operations teams. This
improves our code quality and reduces bugs, along with reduction of time spent on
rework of bugged code. We also want to have effective teamwork among our
group. Because is only a whole year to implement a new architecture on an
existing system, along with other course work, we want to allow optimal
productivity in a limited amount of time. We also can get differing perspectives
and feedback from each other. Good documentation is also extremely key when
developing. Good open API documentation allows the project to be handed off to
future developers, which this project will be, so they have an easy time
understanding the code.

Summary of Requirements

Functional Requirements:

• Creation and editing of safety case diagrams.
• Creating safety cases based off of a template.
• Free text editing on the diagrams.
• Description page of safety cases.
• Importing and exporting of safety cases on local machine.
• Opening an existing safety case.

Nonfunctional Requirements:

• Performance: Running the application in a short response time.
• Scalability: Users being able to add assurance cases.

SDMAY20-26 2

• Security: Saving and creating in a secure environment. No sensitive
information being leaked.

• Reliability: Safe stable software
• Usability: Easy to use and understandable interface for users not well versed

in a technical background.
• Availability: An app that is available for those who need to use it.

Applicable Courses from Iowa State University Curriculum

• Computer Science 309 – Software Development Practices: A practical intro
to managing software development. Process models, requirements analysis,
structured and object-oriented design, coding, testing, maintenance, cost
and schedule estimation, metrics. Programming projects.

• Computer Science 319 – Construction of User Interfaces: Overview of user
interface design. Evaluation and testing of user interfaces. Review of
principles of object orientation, object-oriented design and analysis using
UML in the context of user interface design. Developing Web and
Windows-based user-interfaces.

• Computer Science 363 – Introduction to Database Management Systems:
Relational, object-oriented, semi structured and query languages. SQL,
XML, and NO-SQL. Database design using entity-relationship model, data
dependencies, and relational database design. Application development in
SQL-like languages and general-purpose host languages. Web application
development. Programming projects.

• Software Engineering 329 - Software Project Management: Process-based
software development. Capability Maturity Model (CMM). Project planning,
cost estimation, and scheduling. Project management tools. Factors
influencing productivity and success. Productivity metrics. Analysis of
options and risks. Version control and configuration management.
Inspections and reviews. Managing the testing process. Software quality
metrics. Modern software engineering techniques and practices.

• Software Engineering 339 - Software Architecture and Design. Modeling
and design of software at the architectural level. Architectural styles. Basics
of model-driven architecture. Object-oriented design and analysis. Iterative
development and unified process. Design patterns. Design by contract.
Component based design. Product families. Measurement theory and
appropriate use of metrics in design. Designing for qualities such as
performance, safety, security, reliability, reusability, etc. Analysis and
evaluation of software architectures. Introduction to architecture definition
languages. Basics of software evolution, reengineering, and reverse
engineering. Case studies. Introduction to distributed system software.

SDMAY20-26 3

New Skills/Knowledge acquired that was not taught in courses

Working with a faculty advisor and client face to face is one of the major
differences not learned in other courses. Senior Design allows you to have a bit
more freedom in how you want to design your project and how you want to
communicate with your clients. This freedom gives you a free reign of any
technology, software, development practices, etc. which allows us to really create
the projects the way we want to within the client’s limitations. That being said, you
also have to address some client restraints as well to make sure you are achieving
the goal of what the clients want as well. This is a very valid and applicable skill
that will be used in real life when working with users and clients on large scale
projects at companies. Many of the skills learned in this course may not be on a
technical level, other than possibly learning some new languages, but more
learning things on a one on one communication level with our client and advisor.
We are able to apply skills learned in courses we have taken in the past, such as
generating requirements by working closely with our client/advisor, as well as
gaining practice with utilizing an Agile Development process. All but one of our
developers have worked with Electron, so four of us will be new to working with
this desktop application creation tool.

SDMAY20-26 4

Table of Contents

1 Introduction 10

1.1 Acknowledgement 10

1.2 Problem and Project Statement 10

1.3 Operational Environment 10

1.4 Requirements 11

1.5 Intended Users and Uses 11

1.6 Assumptions and Limitations 12

1.7 Expected End Product and Deliverables 12

2. Specifications and Analysis 13

2.1 Proposed Design 13

2.1.1 Electron 13

2.1.2 Typescript 13

2.1.3 ReactJS 13

2.1.4 Nedb 13

2.1.5 KonvaJS 13

2.1.6 Jest and React-Testing-Library 13

2.1.7 Docker 13

2.1.7 Code-Gen 14

2.2 Design Analysis 14

2.3 Development Process 14

2.4 Design Plan 15

3. Statement of Work 15

3.1 Previous Work And Literature 15

Figure 3.1.1 – The existing project’s creation template for an assurance recipe 15

3.2 Technology Considerations 15

3.3 Task Decomposition 16

Table 3.3.1 – Task Description 16

3.4 Possible Risks And Risk Management 16

3.5 Project Proposed Milestones and Evaluation Criteria 17

3.6 Project Tracking Procedures 17

Figure 3.7.1 – Trello Board 17

SDMAY20-26 5

3.7 Expected Results and Validation 17

4. Project Timeline, Estimated Resources, and Challenges 18

4.1 Project Timeline 18

Figure 4.1.1 – First Semester Project Timeline Gantt 18

Figure 4.1.2 – Second Semester Project Timeline Gantt 18

4.2 Feasibility Assessment 19

4.3 Personnel Effort Requirements 19

4.4 Other Resource Requirements 19

4.5 Financial Requirements 19

5. Testing and Implementation 19

5.1 Interface Specifications 19

Figure 5.1.1 – Code Interface for testing 20

5.2 Hardware and software 20

5.3 Functional Testing 20

Figure 5.3.1 – Example of model testing 21

Figure 5.3.2 – Example of UI testing 22

5.4 Non-Functional Testing 22

5.5 Process 22

5.6 Results 23

6. Closing Material 23

6.1 Conclusion 23

6.2 References 23

6.3 Appendices 23

SDMAY20-26 6

List of figures/tables/symbols/definitions (This should be the similar to the

project plan)

Figure 1. System design diagram

Table 1. Nodes explanations

Node Explanation

User Interactions Handle user interactions with GUI

Renderer Render the GUI whenever the underlying dependency changed

Nedb Database we used for the project

Other libs Other libraries we might use in future

Electron / Browser The nodes that handle rendering and logic

SDMAY20-26 7

Figure 2 - A general assurance case from previous work

Table 2 - Table for use case diagram

Use Case Users Description

Create

Assurance

Recipe

General

User
The user should be able to create an assurance recipe either from a

template or from scratch.

Export

Template
General

User
The user should be able to export their template to their local

computer so they can save it for a later time, transfer between

machines, or share with another user.

Upload

Template
General

User,

Admin

User and admin should be able to upload templates that are saved

locally. The one the admin would upload will be available to all users

through the open source application.

Delete

Template
Admin Admins should be able to delete templates that they upload, but not a

user’s template.

Add Node General

User
The user should be able to add any type of node they want to the

assurance recipe.

Add

Description
General

User
The user should be able to add a description to the node.

Edit Description General

User
The user should be able to edit the description to a node after adding

one, this would include deleting the description or the node.

SDMAY20-26 8

Figure 3 - Use case diagram

SDMAY20-26 9

Figure 4 - Communication diagram

Table 3 - Communication diagram explanation

Component Explanation

Renderer Render the GUI based on the model. This is the place where user can do the

interaction with the user interface.

IPC Main This is the place where the Electron logic happens. This will handle the logic

between user computer and renderer. It will send some signal when user click on

the Electron widgets and the renderer will render the page based on the signal.

Database This is the place where user’s data will be stored. This will communicate to both

IPC Main and renderer. Every user’s data will be stored locally and only be

communicated with IPC Main and renderer.

SDMAY20-26 10

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to acknowledge Myra Cohen for being our faculty advisor and our client during this

entire process. She has been an extremely huge help in guiding us in our project and helping us

come up with how we want to implement this project. We also want to acknowledge Justin

Firestone, Myra’s grad student who helped in our development and helped write some of the

project literatures on Assurance Cases. We also want to thank Mohammed Gesalla, our TA who

went over our design document with us and helped us in our editing process. Lastly, we would like

to thank Mark Hernandez who wrote all of the original code in the original assurance case website.

He provided a starting point for us to go off of and allowed us to see how he created diagrams and

what technologies he used.

1.2 PROBLEM AND PROJECT STATEMENT

Our project is the Assurance Recipes application. These recipes involve the use of synthetic biology
to genetically modify organisms like E. Coli to help daily routines. Many people want to be certain
that this new and exciting opportunity will be safe for both them and the community. That is
where assurance cases come in. They ensure the safety of various parts of their experiments and
map out their design structure in an efficient way. Safety Cases take their design strategy from the
aeronautics and software engineering communities where they can also be seen under the title
Assurance Arguments using Goal Structuring Notation (GSN). There they are used to ensure the
safety of various parts of the aircraft and target certain problem areas in the functions and dangers
of the process of flight. Unlike aeronautics, synthetic biologists do not have to worry about engine
and wing design or console displays, but they do have to worry about accidental release of bacteria
and plasmid conjugation as well as other concerns. As synthetic biology grows to new heights and
levels of complexity, the number of safety concerns a single project or application needs to address
will also grow. Just as people trust the engineering of an airplane despite the many risks, Safety
Cases can help people who use genetically modified organisms feel confident that what they are
using is safe. Our project will allow students and experts to create assurance cases easily and
efficiently on an all new app and will help students out with how to create these assurance recipes.
We want the application to be easily editable where users can create assurance cases easily. With a
clean and highly functional UI, being able to edit and create assurance cases is the biggest thing we
want to accomplish in this project. There is already a website created that accomplishes this, but
the client wants us to make a better and more secure application for Iowa State biology students to
easily use. The problem with the already implemented design is the fact that there is a database
implemented that the client does not own, and it also is storing user information in a not safe way.
Not only this, but the project in general was incomplete. It was meant as a prototype for the iGEM
competition and was hosted on website that needs to be moved. So the goal is to eventually release
a brand new and improved application to the community.

1.3 OPERATIONAL ENVIRONMENT

After discussion with our client/advisor, we have decided that we will develop an Electron
application, which utilizes HTML, CSS, and JavaScript to run as a desktop application on the users’
computer. There are no hazards, temperatures, or weather elements that we need to be aware of
when creating this project because it is purely created using software. This also means that we do
not need to consider having web security because it will be a local application. The previous
application had problems with security and storing users information on the database. We would

SDMAY20-26 11

not have problems with this using Electron because security for data stored locally would have to
be on the user’s end.

1.4 REQUIREMENTS

Functional Requirements:

• Creation and editing of safety cases: Users should be able to freely edit and layout their
safety cases the way they want to.

• Templated safety cases: Users should be able to choose from a list of templates since safety
cases can be quite complex.

• Free text: Users should be able to type free text in each diagram creation.

• Description page of safety cases: We want a description page to describe what assurance
recipes and cases are. We also want to describe the importance of them and how they are
used in synthetic biology.

• Data safe: User’s data should be stored safely. No private information should be leaked or
have any security threats.

• Saving of safety cases: Users should be able to import and export their cases on their local
machines.

Nonfunctional Requirements:

• Performance:
o Users can run on multiple machines.
o Short response time.

• Scalability:
o Users are able to add assurance cases.

• Security:
o Users, program’s data, and ports are protected.
o Follows EU GDPR regulations.

• Reliability:
o Provide a stable, safe software.

• Usability:
o An easy interface for users to learn and understand: Effective, intuitiveness, low

perceived workload.

• Availability:
o Testability
o Manpower
o Detailed diagnostic procedures.

1.5 INTENDED USERS AND USES

The intended users for this project are biology students who plan on making assurance recipes in

their synthetic biology courses. The application will allow them to easily create these diagrams on

their own and from templates so that they can make sure they are running safe and well-designed

experiments. These synthetic biology students also participate in a competition called iGEM. iGEM

is the International Genetically Engineered Machine competition where worldwide undergraduate

synthetic biology students compete and work on projects together. Our assurance cases application

will be used by these students so that they can lay out their safety cases and create diagrams for

SDMAY20-26 12

their experiments. We also plan on expanding it further towards real world synthetic biologists and

researchers so that they have a well-designed tool to use to create Assurance Cases.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:
1. We have to assume that the users are non-technical people. This means that the app we are

creating has to be easy to use and navigate for them to create the assurance cases.It also
should be easy for them to run on their machines without too many requirements. It would
be helpful to include a how to run and how to use guide or read me file when someone
downloads the application.

2. Because our application is a desktop application, we have to assume that the user does not
have a large amount of space on their hard drive. We have to assume that their
specifications are not very good so this application can run on a variety of machines, no
matter how bad they are.

3. Assume the user does not completely know what an assurance recipe is or how to make a
complete one. To solve this problem, we will make a template and a description of how to
make a thorough assurance recipe.

Limitations:
1. Our biggest limitation is a time constraint. Many of us are busy with work and other time-

consuming course work. Many times, it is difficult to find a time where all five of us can
meet together to work. Because of this, all of us can only meet together mostly on Sundays.
In the following semester many of us are taking lighter courses so meeting for working on
our sprints should not be as much of a problem.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

1. Easy to use interface. In saying this we want to deliver an application that can be
used by anybody who is not specifically well versed in the technical field. We want
users to be able to create assurance cases intuitively and efficiently. Since the
application will be mostly used by people well versed in biology, it will be essential
for us to create an organized and clean UI that allows easy diagram creation.

2. We want the user to be able to choose from a list of already templated out
diagrams. Since Assurance Recipes can get quite complex and specific in their
notation, we want users to be able to choose from a list of already templated and
layed out assurance case diagrams. After they choose, they are freely allowed to
edit the diagram as they wish so they can actually fill out the assurance diagrams
specific to their experiments.

3. Free text editing of each part of the diagram.
4. Securely store the user’s data. Although the users don’t enter any personal

information, we do want to allow their diagrams to be safely stored on their local
drives.

5. Easy to install on every machine without too much pre-install requirements. We
want the application to not require much installing for them to begin creating
safety cases. The way we have it set up right now is that they will have a simple
executable file that they can run on any machine and right then they can begin
creating safety cases on their device.

6. Available on any platform (Linux, Windows, MacOS).
7. Easy to install on any platform without too much configuration.

SDMAY20-26 13

2. Specifications and Analysis

2.1 PROPOSED DESIGN

2.1.1 Electron

Electron is a framework for creating native applications with web technologies like
JavaScript, HTML, and CSS. And it works cross-platform which means you can deploy your
application anywhere without contains.

2.1.2 Typescript

TypeScript is an open-source programming language developed and maintained by
Microsoft. It is a strict syntactical superset of JavaScript and allow you adding type for both
variable and function. TypeScript is designed for development of large applications and
trans compiles to JavaScript. Typescript will do the type checking during runtime so that it
will add some type hints and checking during the development. And make it easier to
cooperate with others.

2.1.3 ReactJS

React is a JavaScript library for building user interfaces. React can be used as a base in the
development of single-page or mobile applications, as it is optimal for fetching rapidly
changing data that needs to be recorded. React can break one single application into
different components so that we can reuse the components as we need. Also react is using
declarative syntax of building user interfaces it will rebuild the components whenever the
underlying data has changed. This will be useful when we are building a complex user
interface where many components will interact with each other.

2.1.4 Nedb

Nedb is an in browser javascript database which implements a subset of Mongodb
operations. Nedb itself will store the data in browser by using the indexedDB API provided
by modern browser.

2.1.5 KonvaJS

KonvaJS is a 2d canvas library for desktop and mobile applications. We are using this
library for graphing. By using this library, we can easily draw nodes and lines.

2.1.6 Jest and React-Testing-Library

Jest is a delightful JavaScript Testing Framework with a focus on simplicity. It works with
projects using: Babel, TypeScript, Node, and React. React Testing Library is a very
lightweight solution for testing React components. It provides light utility functions on top
of react-dom and react-dom/test-utils which can let developers to test GUI rendering
without actually render the widget. This will accelerate the testing speed on a large scale
application.

2.1.7 Docker

Docker is a set of platforms as a service (PaaS) products that use OS-level virtualization to
deliver software in packages called containers. Containers are isolated from one another
and bundle their own software, libraries and configuration files. Docker is used for
deployment and testing. By using Docker, we can eliminate the differences between each

SDMAY20-26 14

computer so that it will provide stable test results. Because the implementation of Docker,
it is faster than regular VM.

2.1.7 Code-Gen

We are using Code-Gen technology for our documentation page. This allows us to write
documents in Markdown and automatically compile Markdown to typescript file.

2.2 DESIGN ANALYSIS

We were given an existing web app that implements assurance cases and our primary objective
with the project is to redesign the architecture and overall application. We knew early on from
experience that we wanted to utilize NodeJS and Typescript, due to safe typing and making
JavaScript a more structured language.

Early discussions took place over whether we wanted to do a web app or potentially develop some
sort of desktop application instead. We decided to utilize the Electron framework, due to its ability
to develop cross platform desktop applications utilizing web technologies. A potential advantage
we found when discussing this was that if Electron did not end up working out for what we wished
to accomplish, the codebase we had will be easily migrated to a web application. We also noted
that by developing a desktop application, opposed to a web application, meant that database and
the additional security that comes with it will not be something we have to worry about. For
example, certain specifications must be met for applications utilizing databases in the EU, but we
are only utilizing local storage, therefore bypassing this issue.

The second major decision was what we wanted to use to develop the UI. Some of us had previous
experience utilizing ReactJS. By analyzing Assurance Cases, we realized the ReactJS would work
well with developing the UI portion of the assurance cases due to React emphasizing reusable
components and assurance case diagrams are composed of many different components, many of
which are reused across different types of assurance cases. After agreeing to utilize React, it added
the issue of finding a library for drawing shapes that was compatible with React.

After looking at many different libraries to aid in the drawing of our diagrams, we currently have
selected KonvaJs as our library of choice. We decided on Konva for a number of reasons, with the
first being that Konva works very well with ReactJS. The second major criteria we had for selecting
the library was to have it implemented in a way that had a lot of quality of life functionality, for us,
built in, such as click and drag functionality and the ability to easily draw lines between nodes in
the assurance case diagram.

2.3 DEVELOPMENT PROCESS

We are using the Agile development process. We plan to have 2 major milestones in the fall
semester. We also plan on having weekly and bi-weekly sprints depending on how large the tasks
are, as well as using Trello to keep track of these sprints or any issues we encounter. We wanted to
use Agile because we all have experience working in an agile environment and because of how
efficient it is to use, and it was suggested by our faculty advisor Myra. Agile is very organized and
set process to follow which allows you to run a test-driven development throughout our project
time. Using sprints, you can easily lay out the status of your projects and allows you to only take
work that you can handle at a given time, instead of having constant ongoing story cards going on
at once. We can tunnel in our focus together as a team on one to two tasks as a time to output
production at the highest efficiency.

SDMAY20-26 15

2.4 DESIGN PLAN

Our entire application will be built as an electron application and run as a desktop application. Our
code will be written in Typescript and our User Interface will be built utilizing React components.
Our development environments will be contained using Docker and all of our machines are
currently able to participate in development. The way we will design our UI will adhere to the
ReactJS philosophy of considering all aspects of the UI as components. For the diagrams
themselves, the nodes in the diagrams will be React components that act as wrappers around
shapes drawn using the KonvaJS library. By designing our application with the React mindset, we
are able to maximize the amount of reuse among our different assurance cases. For example, in
assurance recipes, justification nodes are used across almost all assurance recipes, and by designing
our application using React, we are able to maximize code reuse and understandability.

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

We will be modeling the look of our charts based on some existing software that is available. We
have been provided literature by our client/advisor regarding the relevant background knowledge
needed for understanding the basics of Assurance Recipes. Assurance recipes are a lower level
pattern used as an abstraction for Assurance Cases. According to paper, assurance cases can
sometimes be too complex to individuals who are not as experienced in the fields of software
engineering or assurance cases. In the case that a user lacks experience, these cases can sometimes
provide too many degrees of freedom. The aim of assurance recipes is to provide the user a guided
selection of what Myra Cohen and Justin Firestone called ingredients in the literature, and these
ingredients can be filled in by the user as they traverse the assurance case.

Figure 3.1.1 – The existing project’s creation template for an assurance recipe

3.2 TECHNOLOGY CONSIDERATIONS

We decided early on that we wished to develop a NodeJS based application. After some discussion,

we decided that developing an application that runs on the Electron framework would be more

advantageous when compared to a standard web app. Using Electron, we would still be able to

SDMAY20-26 16

develop using NodeJS, but we would also not have to worry about a database and the required

security for user credentials and logins. This decision was made after considering the necessary

security measures that must be in place to comply with the standards set by the European Union.

3.3 TASK DECOMPOSITION

Name Role Task Description

Matthew

Smith

Meeting

Facilitator

Took on the role of assigning and making meetings. Stayed in

contact with Myra who is our advisor and our client, and was the

one who arranged meetings and took into account who could show

up for a given day. Also made sure our group met on our own at

least once a week and worked on Lightning Talks, Design

Document, code, etc. Also worked on organizing our schedule,

setting up trello board, and our website so that it is presentable.

Kevan

Patel

Report

Manager

Helping researching libraries and open source work we could use

for project. CI/CD implementation for the project. Writing

documentation and creating charts and graphs for documentation.

Worked on Lightning Talks and setting up Trello issues as well.

Garrett

Harkness

Scribe Taking notes during our weekly meetings. Contributed to

assignments, discussions on choices of libraries, and development

done so far.

Qiwei Li Chief

Engineer

Design the software and also setup the project structure. Write the

documentation for the project. Choice libraries for project and

implement the initial design. Also write the Docker file for testing

and development. Also make a video of the project Q & A section.

Shiwei

Wang

Test

Engineer

Set up test case, look for hardware and software test. Decided how

to test the project, make a plan on how to test module, how to test

UI, how to test implemented library. Check out test result with

members.

Table 3.3.1 – Task Description

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

Luckily, we haven’t had to deal with too many risks in this project other than software architecture
risk management. Our application does not require any hardware, materials, or equipment to run.
The only thing we need to address is being careful in how we structure and run our architecture so
that it can run quickly and efficiently. We also have the risk of any security threats or leaks and
those need to be addressed as well. Since it is a desktop app, we aren’t storing any user information
and allowing the users to save their diagrams on their local drive so it becomes easy to address this
risk as well.

SDMAY20-26 17

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

• Basic canvas that the user is able to create and use and assurance recipe.

• The user is able to edit the canvas further by adding and deleting nodes and descriptions.

• Implement Generalized GSN

• Generate Assurance Case Recipe from a provided template.

• Open existing assurance cases from the local drive and allow for saving to the local drive.

• Implement additional Assurance Recipe templates

3.6 PROJECT TRACKING PROCEDURES

We have been using Trello to track project tasks and roles for any given week. We also

meet weekly with our advisor and with ourselves to understand what we need to be

getting done throughout the given week. Trello makes it easy because you can create

story cards and put dates and statuses on them as you are working. You can also create

story card descriptions which makes it easy to see who is working on what. It has an easy

to use and organized interface which makes it easy to organize and plan our project

timeline.

Figure 3.7.1 – Trello Board

3.7 EXPECTED RESULTS AND VALIDATION

With our project, we plan to have an application that is widely available and easy to use for people

working in the field of synthetic biology. Our project will be utilized by people who work with our

SDMAY20-26 18

advisor/client initially and then be utilized by more in the field of synthetic biology. Our advisor

works in the field of synthetic biology and will be able to provide validation of progress over the

course of the project.

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

1. Weekly meetings with our client/advisor every Monday, for some accidents, meeting time
will be changed to other days.

2. We will have the basic skeleton of the project developed for our meeting on Nov. 4th.
3. We plan to meet as a group to work as we see necessary.
4. We implement library react at November.
5. Between November 11th and November 18th, we started to set every member’s machine can

run on early version of our software. Before thanksgiving break, November 25th, we make
sure there were no issues on running software.

6. Between December 2th and December 8th, we start to edit our final version of design
document, and make final presentation slides, and during that weekend, we will prepare

the final presentation and distribute presentation part for each member.

Figure 4.1.1 – First Semester Project Timeline Gantt

Figure 4.1.2 – Second Semester Project Timeline Gantt

Sprint 1- We plan to implement the basics of the Containment Recipe as well as basic
implementations of the React components that can be used for other recipes.

Sprint 2 - Allow the ability to generate a Containment Recipe from a template. Allow for saving to a
local drive and opening existing diagrams from a local drive.

Sprint 3 - Implement Safety Mechanism, Kill-Switch, and additional Recipes

Sprint 4 - To be determined at a later point in the semester.

SDMAY20-26 19

4.2 FEASIBILITY ASSESSMENT

The project will be a desktop application that allows the user to generate and edit Assurance Recipe
diagrams. Since we used electron, so the software can be run on different operations, like Linux,
Windows and MacOS with easy to use user interface and tutorials. The most difficult portion of the
project that we are anticipating is the development related to generating the charts and also have
them be aesthetically pleasing.

4.3 PERSONNEL EFFORT REQUIREMENTS

We are just beginning the early stages of development for our project now, but we anticipate
spending 10-15 hours per week during the sprints of our project.

There are two weekly assignments: weekly status reports and lightning talks. For weekly status
reports, we had decided to make 6 reports, and we divide them equally and one member would two
of them. The status reports usually record 10-14 days that include content about weekly meeting
with advisor/client, weekly work process and weekly group meeting.

For lightning talks, we divided them into different parts to ask members to complete. Every time,
we had different members to record voice for them and submit them to canvas.

For design document, we require each one to complete one section. We discuss during weekly
meeting, then we make a google share document so that we can edit and check dynamically.

For programming, Qiwei made early parts since he had acknowledged about Electron. And he
implements react library after we test some libraries during weekly meetings.

4.4 OTHER RESOURCE REQUIREMENTS

The user will need to have around 200-300 megabytes of space available on their hard drive.

4.5 FINANCIAL REQUIREMENTS

We have no financial requirements for this project. Everything we are using is open source and
there has been nothing that we are creating that costs any money. We checked with our client
Myra on this requirement and she has addressed that there are none.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

Currently, we have one model, which implemented the interface called Graph, need to be tested.
This model includes everything we have so far for our business logic. There are two other data
interfaces, which just defined the structure of the data, that doesn’t need to be tested.

export interface NodeObj {
 x: number;
 y: number;
 width: number;

SDMAY20-26 20

 height: number;
}

export interface GraphObj {
 _id?: string;
 name: string;
 description: string
 nodes: NodeObj[]
}

interface Graph{
 graphs: GraphObj[]
 selectedGraph?: GraphObj
 db: Nedb<GraphObj>
 addGraph(name: string, description: string):
Promise<GraphObj>
 addNode(node: NodeObj): Promise<void>
 deleteGraph(graph: GraphObj): Promise<void>
 selectGraph (graph: GraphObj): Promise<void>
 getAllGraph(): Promise<GraphObj[]>
 }

Figure 5.1.1 – Code Interface for testing

5.2 HARDWARE AND SOFTWARE

So far, our project does not require any extra hardware to set test. The most often used hardware is
everyone’s laptop or computer. Since our project will be estimated as a desktop software, so a
laptop or computer will be main hardware testing requirement. Therefore, our mainly developing
working and testing are running on our laptop. Also, before weekly meeting, we will pull latest
project version from Gitlab and run on our laptop or computer to make a brief testing.

The testing software is VS Code, since we are all doing developing at this software, so its would be
easy for us to test each part of feature and the whole project. It's important for us to have a same
developing and testing tool, and VS Code fits our project pretty well and provide a convenient
developing and testing environment.

5.3 FUNCTIONAL TESTING

For this project, we divided the software into models and views by using React context api. This
allows we separate business logic from the UI code. And we will use two testing techniques to test
these separately. After we have testing files, we will use CI/CD tool like Travis CI or Github
Actions to test our software automatically after each push request. We will also use docker for
testing environment setup.

Testing models
To test the correctness of model, we will adopt unit testing along with Jest test framework. Each
model will have at least one testing file associated with it. The goal of model testing should achieve

SDMAY20-26 21

at least 90% code coverage.

describe("Test utils", () => {
 const rsp: Result<Post> = { count: 1, results: [{ title: "Some
title", content: "1234" }] };
 (axios.get as jest.Mock).mockResolvedValue({ data: rsp })
 test("Test search function", async () => {
 let result = await searchPost("Hello")
 expect(result.count).toBe(1)
 expect(result.results).toBe(rsp.results)
 })

})

Figure 5.3.1 – Example of model testing

Testing UIs
To test UI, we will use React-Testing-Library, a library which handles rendering widgets for widget
testing. The purpose of using this library is that by using this library, we don’t need to actually
render the whole website when testing the UIs. This will accelerate our testing speed and simplify
the testing process.

test("home page testing", () => {
 const postResult: Result<Post> = {
 count: 3,
 next: "sss",
 results: [{ title: "p1", content: "p1" }]
 };
 (axios.post as jest.Mock).mockResolvedValue({ data: {} });
 const context = {
 value: 0,
 searchWord: "",
 progress: 0,
 onChange: (newValue: number) => {},
 onSearch: (e: React.ChangeEvent<{}>) => {},
 fetch: () => {},
 fetchMore: () => {}
 };

 const tree = (
 <DisplayContext.Provider value={context}>
 <HomePage></HomePage>

SDMAY20-26 22

 </DisplayContext.Provider>
);
 const { container } = render(tree);
 // should display a progressbar
 const progressbar = container.querySelector("#progress-bar");
 const err = container.querySelector("#err-msg");
 const list = container.querySelector("#post-list");
 const btn = container.querySelector("#load-btn");
 expect(progressbar).toBeDefined();
 expect(err).toBeNull();
 expect(list).toBeNull();
 expect(btn).toBeNull();
 });

Figure 5.3.2 – Example of UI testing

5.4 NON-FUNCTIONAL TESTING

Performance:

So far, based on our diagram testing and UI testing, both parts were working well. Since we only
implement early version for diagram and UI, the results are acceptable for us. In the next semester,
we will keep adding features so that performance will get better. We are not worried about the
performance of running speed or energy saving because our project will not focus on those
performance.

Security:

For this project, we do not worry about security because this project will have all data stored locally
on the user’s computer so security will have to be on the user’s end.

Usability:

We installed VS Code and electron on laptop, there are some issues on first time running, some of
us did not install the module and some of us had problems with operation environment. Once we
fixed those problems, all of us have no problem with running the software. After each pull from
Gitlab, the project does not have any runtime issues.

Compatibility:

There are some compatibility problems with Windows operation while we installed the software for
the first time. But there is no problem installing and running on Linux and MacOS. After we fixed
problem with Windows operation, the software is working well and no issues anymore.

5.5 PROCESS

While we have not begun fully implementing an assurance case, a lot of testing of different drawing

libraries has been conducted, in order to find one that works well with ReactJS and our project. As

SDMAY20-26 23

discussed in Section 2.2, we have decided on KonvaJS due to its inclusion of functionality that

provides many quality of life advantages for us as developers, such as click and drag functionality

and the ability to draw connections between nodes.

5.6 RESULTS

As outlined in previous sections, a large portion of our efforts this semester have been devoted to
researching different libraries and establishing the best development environments on our
machines as possible. As well as researching different components we will use in our project like
how assurance recipes work, Electron, and also different libraries. At the current time, we are ready
to start actively developing our first assurance case implementation, and due to our research, we
believe we have selected the best libraries to do so. We have already developed a base for our
application which we can build off of the following semester.

6. Closing Material

6.1 CONCLUSION

We realize that there is still a lot of implementation left to do for our project. We have a nice

foundation and we have a good understanding of what needs to be done, now all that’s left to do is

to get a good chunk of implementation done for the second semester. Having an organized plan for

next semester will allow us to get the most done while working as efficiently as possible. We are

excited to be given this opportunity to help with this project, because we know how we want to

make it better. The previous students who worked on the project only had a summer to complete

the entire application, and we have a lot more time so that allows us to create and add new

features, as well as clean up old ones already implemented.

6.2 REFERENCES

Firestone J., Cohen M.B. (2018) The Assurance Recipe: Facilitating Assurance Patterns. In: Gallina

B., Skavhaug A., Schoitsch E., Bitsch F. (eds) Computer Safety, Reliability, and Security.

SAFECOMP 2018. Lecture Notes in Computer Science, vol 11094. Springer, Cham.

6.3 APPENDICES

Electron - https://github.com/electron

ReactJS - https://reactjs.org

KonvaJS - https://konvajs.org

Jest - https://jestjs.io

Typescript - https://www.typescriptlang.org

Original Web Application - https://unl-igem-test.netlify.com/

https://github.com/electron
https://reactjs.org/
https://konvajs.org/
https://jestjs.io/
https://www.typescriptlang.org/
https://unl-igem-test.netlify.com/

